EBAG9 adds a new layer of control on large dense-core vesicle exocytosis via interaction with Snapin.

نویسندگان

  • Constantin Rüder
  • Tatiana Reimer
  • Ignacio Delgado-Martinez
  • Ricardo Hermosilla
  • Arne Engelsberg
  • Ralf Nehring
  • Bernd Dörken
  • Armin Rehm
چکیده

Regulated exocytosis is subject to several modulatory steps that include phosphorylation events and transient protein-protein interactions. The estrogen receptor-binding fragment-associated gene9 (EBAG9) gene product was recently identified as a modulator of tumor-associated O-linked glycan expression in nonneuronal cells; however, this molecule is expressed physiologically in essentially all mammalian tissues. Particular interest has developed toward this molecule because in some human tumor entities high expression levels correlated with clinical prognosis. To gain insight into the cellular function of EBAG9, we scored for interaction partners by using the yeast two-hybrid system. Here, we demonstrate that EBAG9 interacts with Snapin, which is likely to be a modulator of Synaptotagmin-associated regulated exocytosis. Strengthening of this interaction inhibited regulated secretion of neuropeptide Y from PC12 cells, whereas evoked neurotransmitter release from hippocampal neurons remained unaltered. Mechanistically, EBAG9 decreased phosphorylation of Snapin; subsequently, association of Snapin with synaptosome-associated protein of 25 kDa (SNAP25) and SNAP23 was diminished. We suggest that the occurrence of SNAP23, Snapin, and EBAG9 also in nonneuronal cells might extend the modulatory role of EBAG9 to a broad range of secretory cells. The conjunction between EBAG9 and Snapin adds an additional layer of control on exocytosis processes; in addition, mechanistic evidence is provided that inhibition of phosphorylation has a regulatory function in exocytosis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of Snapin in neurosecretion: snapin knock-out mice exhibit impaired calcium-dependent exocytosis of large dense-core vesicles in chromaffin cells.

Identification of the molecules that regulate the priming of synaptic vesicles for fusion and the structural coupling of the calcium sensor with the soluble N-ethyl maleimide sensitive factor adaptor protein receptor (SNARE)-based fusion machinery is critical for understanding the mechanisms underlying calcium-dependent neurosecretion. Snapin binds to synaptosomal-associated protein 25 kDa (SNA...

متن کامل

Identification and characterization of Snapin as a ubiquitously expressed SNARE-binding protein that interacts with SNAP23 in non-neuronal cells.

Members of the SNARE (soluble N -ethylmaleimide-sensitive fusion protein attachment protein receptor) superfamily [syntaxins, VAMPs (vesicle-associated membrane proteins) and SNAP25 (synaptosome-associated protein-25)-related proteins] are required for intracellular membrane-fusion events in eukaryotes. In neurons, assembly of SNARE core complexes comprising the presynaptic membrane-associated ...

متن کامل

The dystonia-associated protein torsinA modulates synaptic vesicle recycling.

The loss of a glutamic acid residue in the AAA-ATPase (ATPases associated with diverse cellular activities) torsinA is responsible for most cases of early onset autosomal dominant primary dystonia. In this study, we found that snapin, which binds SNAP-25 (synaptosome-associated protein of 25,000 Da) and enhances the association of the SNARE complex with synaptotagmin, is an interacting partner ...

متن کامل

Slp4-a/granuphilin-a inhibits dense-core vesicle exocytosis through interaction with the GDP-bound form of Rab27A in PC12 cells.

Slp4-a (synaptotagmin-like protein 4-a)/granuphilin-a is specifically localized on dense-core vesicles in PC12 cells and negatively controls dense-core vesicle exocytosis through specific interaction with Rab27A via the N-terminal Slp homology domain (SHD) (Fukuda, M., Kanno, E., Saegusa, C., Ogata, Y., and Kuroda, T. S. (2002) J. Biol. Chem. 277, 39673-39678). However, the mechanism of the inh...

متن کامل

Regulation of the exocytotic machinery by cAMP-dependent protein kinase: implications for presynaptic plasticity.

For over a decade, the enhancement of regulated exocytosis by cAMP-dependent protein kinase (PKA) has remained unexplained at the molecular level. The fact that this phenomenon has been observed in such a wide variety of secretory cell types, from pancreatic beta-cells to neurons, suggests that it is an important and fundamental mechanism. Extensive analysis of the phosphorylation of exocytotic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 16 3  شماره 

صفحات  -

تاریخ انتشار 2005